NVIDIA today unveiled a new family of Tesla GPUs based on the revolutionary NVIDIA Kepler GPU computing architecture, which makes GPU-accelerated computing easier and more accessible for a broader range of high performance computing (HPC) scientific and technical applications. The new NVIDIA Tesla K10 and K20 GPUs are computing accelerators built to handle the most complex HPC problems in the world. Designed with an intense focus on high performance and extreme power efficiency, Kepler is three times as efficient as its predecessor, the NVIDIA Fermi architecture, which itself established a new standard for parallel computing when introduced two years ago.

NVIDIA GPU Tech Conference 2012

The NVIDIA Tesla K10 GPU delivers the world's highest throughput for signal, image and seismic processing applications. Optimized for customers in oil and gas exploration and the defense industry, a single Tesla K10 accelerator board features two GK104 Kepler GPUs that deliver an aggregate performance of 4.58 teraflops of peak single-precision floating point and 320 GB per second memory bandwidth. The NVIDIA Tesla K20 GPU is the new flagship of the Tesla GPU product family, designed for the most computationally intensive HPC environments. Expected to be the world's highest-performance, most energy-efficient GPU, the Tesla K20 is planned to be available in the fourth quarter of 2012.
NVIDIA GPU Tech Conference 2012
The Tesla K20 is based on the GK110 Kepler GPU. This GPU delivers three times more double precision compared to Fermi architecture-based Tesla products and it supports the Hyper-Q and dynamic parallelism capabilities. The GK110 GPU is expected to be incorporated into the new Titan supercomputer at the Oak Ridge National Laboratory in Tennessee and the Blue Waters system at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. The Tesla K10 is available now, but the Tesla K20 won't be available till Q4, 2012.

"Fermi was a major step forward in computing," said Bill Dally, chief scientist and senior vice president of research at NVIDIA. "It established GPU-accelerated computing in the top tier of high performance computing and attracted hundreds of thousands of developers to the GPU computing platform. Kepler will be equally disruptive, establishing GPUs broadly into technical computing, due to their ease of use, broad applicability and efficiency."