

Table of Contents

Introduction.. 1
The Evolution of DirectX... 1
Next-Generation Image Quality .. 3

Lighting and Shadows .. 3
Global Illumination .. 5

Anti-aliasing Improvements ... 6
Custom Anti-Aliasing .. 7

Tighter Specification ... 8
New texture format requirements ... 8
New multi-sample anti-aliasing requirements... 8
Higher precision requirements.. 9

Conclusion ... 9

Introduction

Microsoft® DirectX® 10.1 is the latest application programming interface from Microsoft that
unlocks the state of the art in GPU technology, represented by the ATI Radeon™ HD 3800
series. Key features include an updated shader model, improved anti-aliasing support, more
flexible data access, and tighter specifications for better application compatibility. These
features will enable exciting new techniques, such as real-time global illumination, that will
define the future direction of interactive 3D graphics.

DirectX 10 was one of the most significant updates to the API since its inception. DirectX 10.1
represents an evolutionary update that addresses some of the limitations identified after the
specification was finalized. DirectX 10.1 support will be coming to the Windows Vista™
operating system with the release of a service pack in early 2008.

For many years, ATI was at the forefront of DirectX technology development, working actively
with Microsoft to identify and implement new graphics features. The merger of ATI with AMD
in 2006 not only continues this tradition, but also enables new possibilities for platform-level
synergies between the GPU, CPU, and system chipset.

The new ATI Radeon HD 3800 series of GPUs are the first to be designed for DirectX 10.1, as
well as other cutting edge technologies, including PCI Express 2.0, Unified Video Decoder
(UVD), hardware accelerated tessellation, and power efficient 55nm transistor design. The
products are perfectly positioned to deliver the best experience in not only today’s games, but
also in next-generation titles releasing in 2008 and beyond.

This paper describes the new features of DirectX 10.1, and provides a number of examples
showing how they can be put to use. To help illustrate these techniques, AMD has created an
accompanying interactive game called PingPong. This game makes extensive use of the DirectX
10.1 features on ATI Radeon HD 3800 series products to highlight the benefits in a fun and
informative way.

The Evolution of DirectX
DirectX 10.1 maintains the overall structure and programming model of DirectX 10, while
providing numerous enhancements. The vertex, geometry, and pixel shader instruction sets
have been updated to Shader Model 4.1.

The new features of DirectX 10.1 can be divided into three general categories: new shading and
texturing capabilities, anti-aliasing improvements, and tighter specifications. The following
table highlights some of the key features in each of these categories, as well as some of the
benefits they provide.

v0.4 October 2007 1

 FEATURE FUNCTION BENEFITS

Cube Map Arrays
Allow reading and writing of
multiple cube maps in a single
rendering pass

Efficient Global Illumination in
real time for complex,
dynamic, interactive scenes

Enable many ray trace quality
effects including indirect
lighting, color bleeding, soft
shadows, refraction, and high
quality glossy reflections

Separate Blend Modes
per-MRT

Allows pixel shaders to output
to multiple buffers (MRTs),
each with their own blend
mode

Efficient Deferred Rendering
for improved performance in
complex 3D scenes

Increased Vertex Shader
Inputs & Outputs

Doubled from 16 to 32 128-bit
values per shader

Improved performance for
complex shaders

Gather4

Allows a 2x2 block of
unfiltered texture values to be
fetched in place of a single
bilinear filtered texture lookup

Improved performance for
Stream Computing applications

Sh
ad

er
 a

nd
 T

ex
tu

re
 Im

pr
ov

em
en

ts

LOD instruction
New shader instruction that
returns the level of detail for a
filtered texture lookup

Custom texture filtering
techniques for optimized
performance and quality

Multi-sample buffer
reads and writes

Allow individual color and
depth samples in a multi-
sample buffer to be accessed
directly by a shader

Pixel Coverage Masks Enables programmable anti-
aliasing in a pixel shader

Custom edge detect filters for
high quality anti-aliasing with
optimized performance

Improved adaptive anti-
aliasing performance

Improved compatibility of anti-
aliasing quality with HDR
rendering

Improved anti-aliasing
compatibility and performance
with deferred rendering
techniques

Im
pr

ov
ed

 A
nt

i-
A

lia
si

ng

Programmable AA
Sample Patterns

Gives programmers control
over individual sample
locations for each pixel

Temporal anti-aliasing

Improved image quality for
multi-GPU anti-aliasing
techniques

v0.4 October 2007 2

 FEATURE FUNCTION

FP32 filtering required

Filtering of 128-bit floating
point texture formats now a
requirement instead of an
optional feature

Int16 blending required
Blending of 64-bit integer pixel
formats now a requirement
instead of an optional feature

BENEFITS

Encourages use of these high
precision data formats by
ensuring hardware
compatibility

Minimum 4x MSAA
support required

Multi-sample anti-aliasing with
at least 4 samples per pixel
must be supported for all 32-
bit and 64-bit pixel formats

Standardized AA sample
patterns

Pre-defined sample locations
for 2x, 4x, 8x, and 16x AA
modes that hardware must
support

Ensures anti-aliasing can
behave identically on all
DirectX 10.1 GPUs

Encourages support for anti-
aliasing by improving
consistency

Ti
gh

te
r

Sp
ec

if
ic

at
io

n

Increased precision for
floating point
operations

0.5 ULP precision required for
all floating point math
(add/subtract/multiply/divide)
and blending operations

Eliminates rounding errors

Matches IEEE standard
requirements for these
operations

Next-Generation Image Quality

Lighting and Shadows

One discontinuity between real time and non-real time rendering today is the latter’s use of
global illumination for physically based, realistic lighting. The process of determining the
amount and color of lighting reflecting off any given point is critical to giving rendered scenes a
sense of depth, and helping viewers gauge the location and movement of objects in 3D space.

An example of this is how indirect or bounced lighting helps you visually place an object in the
scene. When one object gets close to another brightly colored object, bounced/reflected light
causes color bleeding, and this provides an important visual cue for the closeness of the two
objects. So when a white ball is approaching a red wall (for example), the part of the ball
facing the wall will start to take on a reddish hue from the light that is bouncing off the wall.
The human perceptual system processes this information and intuitively understands that the
ball is near the wall. This is important for game play, particularly in our PingPong game,
because it enables the player to gain a natural grasp of where the balls are in 3D space. This
gives the player a much richer experience, and makes it easier to make strategic gameplay
decisions.

v0.4 October 2007 3

This scene from the ATI Radeon PingPong game shows global illumination in action,
providing realistic lighting and shadows with thousands of physically simulated objects

that the player can interact with. The right hand side of the image shows how the scene
looks with global illumination disabled. Using ray tracing techniques to render this type

of highly dynamic scene would be practically impossible to achieve in real-time on today’s
consumer hardware.

There are a number of different lighting methods used in 3D rendering today, including
light/shadow mapping, radiosity, and ray tracing. Ray tracing tends to perform better on CPU-
like architectures, while light/shadow mapping and certain radiosity techniques tend to
perform better on GPU-like architectures.

Light/shadow mapping works by rendering a version of the image from the point of view of
each light source to one or more textures. For each pixel, lookups into these textures are
performed to determine the amount and color of light contributed by each, and also whether
or not each light source is visible from that pixel (if not, it is considered shadowed). Surface
shader programs then evaluate and blend all the contributions, taking into account material
properties, to determine the final pixel color.

This lighting method is straightforward for capturing standard diffuse lighting, but handling
reflections generally requires separate cube maps to be rendered. It is relatively fast and

v0.4 October 2007 4

handles dynamic scenes well, but reflection and shadow quality can suffer from limited
resolution of light/shadow maps. It also doesn't handle large numbers of point or area light
sources well, and it doesn't capture indirect lighting.

Ray tracing works by casting rays out from the viewpoint toward the location of every visible
pixel on the screen. It then determines the first point at which each ray intersects an object,
and casts rays into each of those points from all directions. A shader is executed at each point
to determine the amount and color of light reflecting off of it. This process can be repeated as
necessary for multiple bounces to get indirect lighting. It’s also good at handling reflection,
refraction, and shadows. However, it requires billions of rays per second to be cast to achieve
real time frame rates at reasonable resolutions. It also needs complex data structures to store
the locations of all objects in the scene, which makes it inefficient for dynamic scenes (since
they require these data structures to be updated each frame). Finally, ray tracing is bad at
handling shading, since complex surface shaders must be executed repeatedly for each pixel to
handle many incoming rays.

Since ray tracing is prohibitively expensive on today’s hardware, most games today handle
indirect lighting with a "constant ambient term" (i.e. uniform illumination with no particular
source that contributes to the entire scene). This is a very rough approximation at best, and it
doesn't handle color bleeding or shadows.

Radiosity is another lighting and shadowing technique used in some games today that combines
some of the benefits of both light/shadow mapping and ray tracing. It works by using a method
similar to ray tracing to pre-compute and store lighting values for a scene, then uses those
stored values at render time to allow fast indirect lighting. However, the extensive pre-
computation required means that radiosity doesn’t work well for dynamic scenes with moving
or changing light sources.

Global Illumination

Global illumination is a rendering technique that combines the benefits of light/shadow
mapping with indirect lighting and support for practically unlimited dynamic light sources,
realistic reflections, and soft shadows. With DirectX 10.1, developers can use indexed cube
map arrays and geometry shaders to implement global illumination efficiently in real time,
even with thousands of physically modelled objects in a complex, interactive scene.

This technique works by dividing the scene into a 3D array of cubes. For each cube face, a
simple version of the scene is rendered from the point of view of someone at the center of the
cube looking outward (referred to as a “light probe”). The resolution and detail of these
images generally doesn’t need to be as high as that of the final image, but is easily scalable
according to the level of accuracy and performance required. When the six faces of each cube
are complete, they are stored in a cube map texture.

The next step is to convert each cube map into a compressed spherical representation using
spherical harmonics. With this new representation, it becomes possible to quickly determine
the amount and color of light falling on any point in the cube from any and all directions with a
few simple math operations. For points between the light probes, lighting values can be
interpolated between values taken from adjacent cube maps.

v0.4 October 2007 5

Adding to the effectiveness of the global
illumination is a dynamic ambient occlusion
technique. This is an important factor because it
captures local visibility changes beyond what is
provided by the global illumination alone. In the
PingPong game, a dynamic ambient occlusion
technique gives the balls soft-edged shadows as
they approach each other and as they approach
the walls of the scene. These contact shadows
are an important visual cue for resolving objects’
positions in a scene.

The cube map textures can also be used to
create high quality reflections on shiny or glossy
objects in the scene. In the PingPong game,
looking closely you can see that each of the
thousands of balls has a reflection of the
environment on its surface.

Illustration of light probes used to
capture global illumination.

This method of calculating lighting is highly scalable. The level of quality can be controlled by
changing the size and number of cubes used, as well as the level of detail in the cube face
images. With DirectX 10.1 cube map arrays, large numbers of cube maps can be rendered to
and sampled from simultaneously in parallel, making this technique particularly effective on
single GPU or multi-GPU systems.

If required for extremely complex scenes, multiple light bounces can easily be simulated by
repeating this process and accumulating the results before rendering the final image.
Furthermore, the quality of the lighting can be decoupled from the number of objects or
polygons in the final scene; in the case of the PingPong game, the number of balls that can be
rendered is limited only by the speed of the physics simulation.

In summary, DirectX 10.1 enables a breakthrough in lighting quality with real-time global
illumination effects, including indirect lighting, color bleeding, soft shadows, reflection and
refraction.

Anti-aliasing Improvements

Jagged, shimmering edges caused by aliasing can be very distracting in rendered images.
These artifacts are a consequence of insufficient rendering and/or display resolution. They can
be reduced or eliminated using filtering techniques, which work by taking multiple samples per
pixel and blending them together. The trick is to choose sample points and weights so as to
maximize edge smoothing without blurring out detail, while maintaining good performance.

The most commonly used anti-aliasing technique today is multi-sample anti-aliasing (MSAA),
but this only works on polygon edges; it doesn't address texture aliasing or shader aliasing. The
ATI Radeon HD 2000 series introduced Custom Filter AA (CFAA), which enabled sophisticated
programmable filters. The latest Catalyst drivers support 4 different filter types that can be
applied to almost any game using DirectX 9 or earlier. The most advanced of these filters is

v0.4 October 2007 6

the edge detect filter, which detects and anti-aliases all edges (including those in textures and
shaders).

Edge pixels, detected by the edge detect AA filter and highlighted in red in this image
from the ATI Radeon PingPong game, are assigned more samples than other pixels in the
image. The inset at the lower right shows how this anti-aliasing removes jagged edges
and shimmering artifacts from the edges of the balls; the effects are more pronounced

when the image is in motion.

Custom Anti-Aliasing

DirectX 10.1 allows custom anti-aliasing filters to be implemented with pixel shaders. Custom
filters can offer improved quality in certain cases where standard MSAA can have issues, such
as with HDR lighting and deferred shading techniques. All DirectX 10.1 compatible hardware
must support a minimum of 4x MSAA. The specification now includes some pre-defined AA
sample patterns, in contrast to earlier versions of DirectX where they were left entirely up to
each particular GPU to define.

A new feature of DirectX 10.1 allows all AA buffers to be accessed directly by shaders.
Previously, it was only possible to access multi-sampled color buffers; it was impossible to

v0.4 October 2007 7

access information from a depth buffer for each sample individually This allows developers to
implement more advanced custom AA techniques using a combination of shaders and dedicated
hardware, much like ATI Radeon HD GPUs do today with CFAA.

ATI Radeon HD also introduced support for Adaptive Anti-Aliasing, which provides texture anti-
aliasing for partially transparent textures (such as foliage and chain-link fences). DirectX 10.1
expands on this capability by introducing sample coverage masking, which provides control
over the specific sample locations where pixel shaders are executed. This allows developers to
extend the Adaptive Anti-Aliasing technique to address more types of aliasing artifacts.
Custom sample patterns can also be specified to complement the basic set that must be
supported by all compatible hardware. Many of these capabilities were already present in
previous generations of ATI Radeon GPUs, but the DirectX 10.1 allows them to be exposed
directly to developers for the first time.

In summary, DirectX 10.1 finally gives developers the tools they need to eliminate all types of
aliasing artifacts from interactive real-time games, delivering a major increase in image
quality.

Tighter Specification

GPU compatibility issues have historically been a significant roadblock that has slowed the
adoption of new 3D features by developers. These arise when certain elements of the
programming interface they are using are interpreted slightly differently by different GPUs,
causing unexpected performance drops, image quality problems, error messages, or even
crashes. Rather than spend time working around these problems, many developers preferred
to avoid them entirely by targeting lowest common denominator GPU feature sets.

DirectX 10 made major strides toward eliminating these issues by more tightly defining the
required GPU behavior for each function and instruction, and greatly reducing the number of
optional features that might be present on one DirectX 10 GPU but not present on another.
Many of the improvements in DirectX 10.1 were introduced to take the API even further down
this path.

New texture format requirements

One obstacle that has prevented developers from using the higher precision texture and output
formats in recent versions of DirectX has been the limitations in what operations each GPU can
perform on them. DirectX 10.1 improves this by requiring all compatible GPUs to support
texture filtering of 32-bit floating point formats, and blending operations on 16-bit integer
formats.

New multi-sample anti-aliasing requirements

Multi-sample anti-aliasing is a well established technique for improving image quality.
However, over the years, many enhancements have been made to the basic technique. Since

v0.4 October 2007 8

these modifications can yield significantly different output on different GPU models,
developers often tended to avoid supporting them directly in their games. DirectX 10.1
mandates a minimum anti-aliasing quality requirement as well as a set of pre-defined sample
patterns. This ensures that a consistent, high quality level for anti-aliasing is supported on all
compatible GPUs, while still supporting new techniques on individual GPUs.

Higher precision requirements

All data formats have a limited amount of precision they can support, which depends on the
number of bits available. However, operations done on these formats do not necessarily
produce output that takes full advantage of all the available precision; in some cases,
approximations are used that can cause rounding errors in the least significant bits of the
output. This practice can cause unpredictable behavior in some cases (for example, when
errors build up due to iterating an operation many times). DirectX 10.1 addresses these issues
by mandating that basic math operations on floating point values up to 32-bits take advantage
of the full precision available, thus ensuring identical results down to the last bit on all
compatible GPUs (and even CPUs as well).

Conclusion

DirectX 10.1 offers incremental improvements to the programming interface that address
limitations of DirectX 10, and unlock new graphical techniques that will take the quality of 3D
graphics to the next level in 2008 and beyond. Advantages include global illumination
delivering lighting and shadow quality in real-time that matches the ray tracing techniques
used in CG films, improved anti-aliasing techniques to clean up distracting shimmering
artifacts, and tighter specifications for improved compatibility. The ATI Radeon HD 3800 series
products are the world’s first GPUs to bring these features and benefits to the PC.

v0.4 October 2007 9

Disclaimer

The information presented in this document is for informational purposes only and
may contain technical inaccuracies, omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2007 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
ATI, the ATI logo, Avivo, Catalyst, Radeon, and combinations thereof are trademarks
of Advanced Micro Devices, Inc. Vista is a trademark, and Microsoft and Windows are
registered trademarks, of Microsoft Corporation in the United States and/or other
jurisdictions. Other names are for informational purposes only and may be trademarks
of their respective owners.

	 Introduction
	The Evolution of DirectX
	Next-Generation Image Quality
	Lighting and Shadows
	Global Illumination

	Anti-aliasing Improvements
	Custom Anti-Aliasing

	Tighter Specification
	New texture format requirements
	New multi-sample anti-aliasing requirements
	Higher precision requirements

	Conclusion

